ADDITION OF TRIMETHYLSILYL CYANIDE TO a-SUBSTITUTED KETONES: CATALYST EFFICIENCY

W. J. Greenlee and D. G. Hangauer

Merck Sharp & Dohme Research Laboratories, Division of Merck & Co., Inc. P.O. Box 2000, Rahway, NJ 07065 USA

Abstract: Addition of trimethylsilyl cyanide to a-substituted ketones is often slow and incomplete when catalyzed by zinc iodide. Use of potassium cyanide/18-crown-6 complex as catalyst is a superior method, providing high yields of adducts.

The addition of trimethylsilyl cyanide (TMSCN) to carbonyl compounds is a convenient route for preparation of the corresponding cyanohydrin trimethylsilyl ethers.¹ These serve not only as protected analogs of aldehydes and ketones but also as intermediates for synthesis of cyanohydrins, 2 α -hydroxyamides, 3 α , β -unsaturated nitriles, 4 and β -aminoalcohols. 5 The addition of TMSCN to ketones has been shown to be accelerated by addition of a catalytic amount of a Lewis acid, most notably zinc iodide.^b Nucleophilic catalysis, particularly with potassium cyanide/18-crown-6 complex has also been demonstrated to be effective, especially for acid-sensitive ketones. ^{1a,6} However, the utility of the KCN/18-crown-6 catalyst system has not been generally recognized, as evidenced by the frequent use of 2nI2, even where elevated temperatures and extended reaction times are required.

$$R_1 \xrightarrow{C} R_2 \xrightarrow{TMSCN} R_1 \xrightarrow{C} R_2$$

...

Recently we had occasion to attempt the addition of TMSCN to a-acylamino-substituted ketones $\underline{1}$ and $\underline{2}$ using ZnI_2 catalysis. Neither ketone underwent addition under these conditions; in fact ketone 1 was heated at 60°C in neat TMSCN for 20 hrs in the presence of ZnI₂ with no change. In contrast, use of KCN/18-crown-6 complex gave rapid and complete formation of adducts. Heretofore p-quinones have provided the only example of substrates for which use of KCN/18-crown-6 was required.

Additional examples in the table illustrate the frequent ineffectiveness of ZnI, catalysis for ketones bearing electron-withdrawing substituents at the adjacent carbon atoms.⁸ For these ketones, catalysis with KCN/18-crown-6 proved the method of choice, affording the cyanosilylation products in high yields.

	Ketone	KCN/18-crown-6 Time Yield		<u>ZnI₂ Time <u>Yield</u></u>	
1.	PhCH ₂ CH ₂ C-CH ₂ N-C-N	2.5 hr	88%	24 hr	none ^{c)}
	$CO_2 - \underline{r} - Bu$				
2.	PhtN-CH2C-CH-NH-BOC	10 min	81%	24 hr	none ^{c)}
3.	O CH H I 3 Ph-C-CH-NPht	1.5 hr	88%	24 hr	none ^{C)}
4.	о сн ₃ с-сн ₂ -Р (осн ₃) ₂	2 hr	96%	24 hr	c) none
5.	сн ₃ ^{с-сн} 2-s02 ^{сн} 3	2.5 hr	95%	24 hr	83%
6.	CH ₃ C-CH-NO ₂	10 min	94%	24 hr	(85%) ^{b)}
7.	о сн ₃ с-сн(осн ₃) ₂	10 min	83%	24 hr	d)
8.	PhCH ₂ CH ₂ -C-CO ₂ Et	10 min	77%	3.5 hr	71%

Table: Addition of Trimethylsilylcyanide to Ketones Catalyzed by KCN/18-crown-6 or ZnI

a) The ketone (1 mmol) was combined with TMSCN (1.2 mmol), CH_2Cl_2 (2 ml) and either KCN (10 mg) and 18-crown-6 (10 mg) or ZnI_2 (10 mg) were added. All reactions were run under a nitrogen atmosphere. Yields are for products purified by silica gel chromatography. All adducts gave spectral data (¹H NMR, IR, and MS) in accord with the assigned structures.

b) Yield in parentheses refers to conversion as determined by ¹H nmr spectrum (product not isolated).

c) No reaction observed.

d) Slow conversion to several spots on tlc (silica gel).

References

- (a) D. A. Evans, L. K. Truesdale, G. L. Carroll, <u>Chem. Commun.</u>, 55 (1973); <u>J. Org.</u> <u>Chem.</u>, <u>39</u>, 914 (1974).
 (b) W. Lidy, W. Sundermeyer, <u>Chem. Ber</u>., <u>106</u>, 587 (1973).
- 2. P. G. Gassman, J. J. Talley, Tetrahedron Lett., 3773 (1978).
- 3. G. L. Grunewald, W. J. Brouillette, J. A. Finney, <u>1bid</u>., <u>21</u>, 1219 (1980).
- 4. M. Oda, A. Yamamuro, T. Watabe, Chem. Lett., 1427 (1979).
- D. A. Evans, L. K. Truesdale, G. L. Carroll, J. Org. Chem., <u>39</u>, 914 (1974); R. Amouroux, G. P. Axiotis, <u>Synthesis</u>, 270 (1981); W. E. Parham, C. S. Roosevelt, <u>Tetrahedron Lett.</u>, 923 (1971).
- 6. D. A. Evans, L. K. Truesdale, Tetrahedron Lett., 4929 (1973).
- 7. D. A. Evans, J. M. Hoffman, L. K. Truesdale, <u>J. Amer. Chem. Soc</u>., <u>95</u>, 5822 (1973).
- Complexation of ZnI₂ at sites other than the carbonyl oxygen in these substrates may contribute to its ineffectiveness as a catalyst.

(Received in USA 29 June 1983)